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Hess' solution [1] of the problem of motion of a body with a stationary point has certain
pecularities which have been investigated by Zhukovskii [2], Chaplygin [3] and many
others, It was recently discovered that not all the solutions of the problem are stable
with respect to generalizations [4], For example, Kovalevki's solution [5] does not have
an analog with the corresponding properties if a gyrostatic moment is applied to the
body, Sretenskii [6 and 7] showed, however, that the Hess solution does, in fact, have an
analog in the solution of the gyrostat problem, A still more general result was obtained
by Kharlamov [8], who pointed out a linear invariant relation in the problem of the mo-
tion in a fluid of a body bounded by a multiply connected surface, The solutions of
Sretenskii and therefore of Hess are special cases of the Kharlamov solution,

Let us consider a body with a stationary point which has an ellipsoidal cavity com-
pletely filled with an ideal fluid in homogeneous vortex motion, This problem is inve-
stigated in the monograph by Moiseev and Rumiantsev [9], The motion of such a body
in a gravitational field is described by a system of nine equations, This case also involves
a linear invariant relation which is a generalization of the Sretenskii and Hess solutions,
In contrast to the latier relations, however, our expression is not a special case of the
invariant relation of Kharlamov,

Assuming that the center of gravity of the system under consideration lies on the per-
pendicular to the circular cross section of the ellipsoid of gyration (the Hess condition),

i, e, that z, =0, z, Vfi(c__B)_yc VB(J{—-C):O
we can write out Egs, of motion of the body using the notation of {9],

A % T4 %?l 4 (C — B) g3 -+ C'0sQs — B'tsQa = Mgy,
B %‘(:—2 + B :fi-%z—l- + {4 — C) w03 + A'03gQy — C'onQs = — Mgz.xs

c %’; + ¢ %?3- + (B — A) 0109 -+ B'ona — 4’0 = Mg (2,12 — Y1)

W= (@ - ) e 2
= — ) T e
a8 2 )

% = W3Yg — 0273, ‘zi = Ty — WgT1, -%}?- = WeT1— W12

Here 4 , B, C are the altered moments of inertia of the system A7, 8.0 are the
differences between the moments of inertia of the fluid and of the equivalent solid ;
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@,d,c are the semiaxes of the ellipsoidal cavity ; # is the mass of the system,
Let us change variables
Awy = z1 — AA’co (Chy + Beo) NQy, By ==z — BB'¢co (Cag + Acy) NQy (2)
2 — b2 a2 C__bz——a“’
R Sy i T aFre T ETae
N71= 4Bc? + C? — AC — BC

and fmpose the conditions
42 B2 C2
A B C =0

a02 boz 002

co (Cby + Beg) IB (Cagd — Ace?) + agbeC (C — A)} N —
— 0.8 MC [(Cby + Bey) — (Ab, — Bag)] = 0

o (Cag + Aco)[A (Cby? — Bey?) + aghC (C — B)I N —
— 0.8 MC [(Cag ¥ Acy) + (Aby — Bag)} = 0
on the parameters of the system,
Then, converting to the special axes resulting from the rotation of the coordinate sys-

tem by the angle o = arctg <A (C — B)>x/:
B(A—7)
we obtain the first Eq, of system (1) in the form
dy/dt = my, (03 -+ nQy). Y = 7y c08Q + x5 8ina 3)
= B(CaP— A) +ahC (C—A) y |, _ ¢ (L=C)(C — B_))‘/z
(C—A) \ AB
Eq, (3) together with system (1) has a partial integral of the form
y=20

or, along the principal axes,
Axe [@1 4 'co (Cho + Beo) NQu) + By [0 + B'eo (Cap + Aco) NQa] =0

This linear invariant relation generalizes the Hess relation and becomes the latter for
a=1b=c
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Let us consider the Hamilton-Jacobi equation

S s \*
—_ = 1
= +( ) +F=0 )
Here .S is the action function and 7" is a given function of the variables 7 and ¢,
We shall attempt to find the solution of this equation in the form
§ =8+ 81 So = Xy (2)To (1), S; = Xy (2) + Ty (2) @
Here we have introduced the new variable ) =7/(Z) , where f(¢) is any doubly dif-
ferentiable function, Substituting (2) into (1), we obtain

8So | S0 _m_df(t) (98
r onj(t) ~ar ( o)fz(‘H‘

a8 z df(t 38
7w G2 o)+ 5+ () ro+r=o 3)
In the latter equation the coefficient of 35} /X is equal to zero provided that
z?  df (1)
So=— Ty o ”

For this S, Eq, (3) yields
1 ,df(t)y 1 d2 (1) dT.(t) 1 dX, (x) 1
| (Fa) —me w ) a T+ (TR D) v r=0 @
The variables in this equation are separable if s
1 a2y 1 df(t)y
F=POY@+ o0+ mm e () | ©
Here Y(oxr) and M(¢) are arbitrary functions, If this condition is fulfilled, the total
integral Eq, (1) is 2 df(t)
S=—Zpm ar S Vcl—‘f’(”)dz—y”(t)(01+n(t))dt4=0a
where () and Cg are arbitrary constants,
Specifically, separation of variables in Eq, (5) is possible if
1 ( df ) 1y B 1
218(1) \ dt Ay de T = Va(t—by + 4kja

F=pmX@E O



